© Formpipe.

Knowledgebase > Temenos > Temenos FAQs >

How to expand Default Script functions for browser tools in
custom.js.
Ross Glover - 2022-06-22 - Comments (0) - Temenos FAQs

temenos

The Custom.js file resides in the Transact BrowserWeb.war file and it contains a number of
EFS Script functions that are called when adding web browser tools like PDF Preview and
eSignatureScan.

These instructions are only relevant to the older Transact installations.

Whilst the scripts are supplied by Formpipe during installation, they are often updated and
modified during this process, so the versions below may not always match exactly what is
implemented. Despite this, the principles that are discussed can be applied to fit any
version of the script.

The filenames and paths mentioned are only relevant for ModelBank on JBOSS. The
custom.js file containing these scripts may be in a different .war file or in a different path.

Below is an example of the EFS Signature Capture button being added to the browser. It is
linked to a function in the custom.js file called:
efs version launchPdfRequest signature()

The function is run on the ENQuiry screen in Transact by editing the Enquiry and calling the
function on a tool.

% 0 N 2 £ O ore Acton . Sl w

GENERATE PDF P4 111446 (TEST CIH R15)

Below are two functions that your Formpipe Project manager will have added into custom.js
if these specific Transact interfaces were installed during the project. Whilst they are very
similar,efs version launchPDFRequest signature() contains less code and
includes the ability to record the version number, compared to

efs version launchPDFRequest().

https://support.formpipe.com/
https://support.formpipe.com/kb
https://support.formpipe.com/kb/temenos
https://support.formpipe.com/kb/temenos-faqs
https://support.formpipe.com/kb/articles/how-to-expand-default-script-functions-for-browser-tools-in-custom-js-2
https://support.formpipe.com/kb/articles/how-to-expand-default-script-functions-for-browser-tools-in-custom-js-2
https://support.formpipe.com/kb/temenos-faqs

You can customise these if you want to alter the functionality.

For example, if you use efs version launchPDFRequest signature() you will notice
two differences in the output, as compared to the output from
efs version launchPDFRequest():

¢ You may find that certain tags containing data are missing from the XML file that is
generated and sent to Lasernet when hitting the “SIGN DOC” button

¢ You will find that the tag containing the version number is also missing from the XML
file

The launchPDFRequest code

function efs version launchPdfRequest() {
// store current form values

try {

var appreqForm = FragmentUtil.getForm(currentForm GLOBAL);
var previousStylesheet = appreqForm.clientStyleSheet.value;
var previousTarget = appregForm.target;

var previousWindowName = appreqForm.windowName.value;

// create popup and update form values
appreqForm.windowName.value =
FragmentUtil.getWindowOrFragmentName();
appregForm.clientStyleSheet.value =
"/transforms/custom/itransform-version.xsl";
appreqForm.target = createResultWindow("NEW", 900, 600);
if (appregForm.RecordRead.value == 1) {
// we're editing the record, so run validate
appreqgForm.ofsOperation.value = VALIDATE ;
appreqForm.ofsFunction.value = "I";

// update transaction id for security validation

var transactionId = getFormFieldValue(currentForm GLOBAL,
“transactionId");

transactionId = validateTransId(transactionId);

setFormFieldValue(currentForm GLOBAL, "transactionId",
transactionId);

checkChangedFields();

} else {
// we're viewing the record, so run build
appreqForm.ofsOperation.value = BUILD ;
appreqForm.ofsFunction.value = "S";

}

FragmentUtil.submitForm(appreqForm);

// reset form values

appregForm.clientStyleSheet.value = previousStylesheet;
appreqForm.target = previousTarget;
appregForm.windowName.value = previousWindowName;

} catch (ex) {
alert(ex.message);

The lunchPDFRequest_signature code

function efs version launchPdfRequest signature() {

//Get the form
var appregForm = FragmentUtil.getForm(currentForm GLOBAL);

//Add/update the correlationId and oneWay flag

var correlationId = efs createCorrelationId();

_efs _addOrUpdateInputWithValue(appregForm, efs correlationId,
correlationId);

_efs _addOrUpdateInputWithValue(appregForm, efs noResponse,
"true");

//update the style sheet
appregForm.clientStyleSheet.value =
"/transforms/custom/itransform-version.xsl";

//set the global transaction id for some reason
transactionId = appreqForm.transactionId.value;

//grab the version and update
var savedVersion = appreqForm.version.value;
appreqForm.version.value = "";

//grab the routine args and update
var savedRoutineArgs = appreqForm.routineArgs.value;
appreqForm. routineArgs.value = "1";

//grab the target and update to a background iframe
_efs addHiddenIFrame(efs backgroundwWorker response)
var savedTarget = appreqForm.target;
appreqForm.target = efs backgroundWorker response;

//grab the window name and update
var savedWindowName = appregForm.windowName.value;

appreqForm.windowName.value = window.name;

//some other form changes

appreqForm. routineName.value = "";
appreqForm.ofsFunction.value = "I";
appreqForm.ofsOperation.value = BUILD ;
appreqForm.requestType.value = OFS APPLICATION ;

//submit the form and revert saved changes
FragmentUtil.submitForm(appreqForm);
appreqgForm.target = savedTarget;
appreqForm.windowName.value = savedWindowName;
appreqForm.version.value = savedVersion;
appreqForm.routineArgs.value = savedRoutineArgs;
appreqForm.clientStyleSheet.value = "";

//start the client

_efs addHiddenIFrame(efs backgroundWorker client);

//var appUrl = "pdmclient://Signature
Application/search=eSignature/parameters={correlationId:
correlationId + "}/engine=tablet";

var appUrl = "pdmclient://Signature
Application/search=eSignature/parameters={correlationlId:
correlationId + "}/engine=wacom";

window.open(appUrl, efs backgroundWorker client);

’

While they are similar, the biggest difference with the ESignature function is that some of
the tags and data, as well as the version number, is not sent in the XML. To add this
functionality into the ESignature interface, you need to replace the existing code:

appreqForm.ofsFunction.value = "I";
appreqForm.ofsOperation.value = BUILD ;

with the following code from efs version launchPDFRequest()

if (appregForm.RecordRead.value == 1) {
// we're editing the record, so run validate
appreqForm.ofsOperation.value = VALIDATE ;
appreqForm.ofsFunction.value = "I";

// update transaction id for security validation

var transactionId = getFormFieldValue(currentForm GLOBAL,
"transactionId");

transactionId = validateTransId(transactionId);

setFormFieldValue(currentForm GLOBAL, "transactionId",
transactionld);

checkChangedFields();

} else {

// we're viewing the record, so run build

appreqForm.ofsOperation.value = BUILD ;

appreqForm.ofsFunction.value = "S";

}

It can be seen from line of code in efs version launchPDFRequest signature()
that version is being set to blank:

appregForm.version.value = H

This means that it will not appear in the XML. However, if the above line is commented out,
the function will set the version number and it will be sent in the XML.

The function below shows the result of making the above edits to the standard

efs version launchPDFRequest signature() function in custom.js. Whilst some
functions will differ slightly in appearance, the outcome should be identical if the edits are
carried out carefully.

function efs version launchPdfRequest signature() {

//Get the form
try {
document.getElementById("version").value =
document.getElementById("version").value + ".SIGN";
var appreqForm = FragmentUtil.getForm(currentForm GLOBAL);
//Add/update the correlationId and oneWay flag
var correlationId = efs createCorrelationId();
_efs _addOrUpdateInputWithValue(appregForm,
_efs correlationId, correlationId);
_efs addOrUpdateInputWithValue(appreqForm, efs noResponse,
"true");
//update the style sheet
appregForm.clientStyleSheet.value =
"/transforms/custom/itransform-version.xsl";
//set the global transaction id for some reason
transactionId = appreqForm.transactionId.value;
//grab the version and update
var savedVersion = appregForm.version.value;
//appreqForm.version.value = "";
//grab the routine args and update
var savedRoutineArgs = appreqForm.routineArgs.value;
appreqForm. routineArgs.value = "1";
//grab the target and update to a background iframe
_efs _addHiddenIFrame(efs backgroundWorker response);
var savedTarget = appreqForm.target;
appreqForm.target = efs backgroundWorker response;
//grab the window name and update
var savedWindowName = appregForm.windowName.value;
appreqForm.windowName.value = window.name;
appreqForm. routineName.value = "";
if (appregForm.RecordRead.value == 1) {
// we're editing the record, so run validate
appreqForm.ofsOperation.value = VALIDATE ;
appreqForm.ofsFunction.value = "I";
// update transaction id for security validation
var transactionId = getFormFieldValue(currentForm GLOBAL,
"transactionId");
transactionId = validateTransId(transactionId);
setFormFieldValue(currentForm GLOBAL, "transactionId",
transactionId);
checkChangedFields();

} else {
// we're viewing the record, so run build
appreqgForm.ofsOperation.value = BUILD ;
appreqForm.ofsFunction.value = "S";
}
//some other form changes
//appregForm.ofsFunction.value="S";
//appreqForm.ofsOperation.value= BUILD ;
appreqForm.requestType.value = OFS APPLICATION ;
//submit the form and revert saved changes
FragmentUtil.submitForm(appreqForm);
appreqForm.target = savedTarget;
appreqForm.windowName.value = savedWindowName;
appreqForm.version.value = savedVersion;
appreqForm. routineArgs.value = savedRoutineArgs;
appreqForm.clientStyleSheet.value = "";
//start the client
_efs addHiddenIFrame(efs backgroundWorker client);
//var appUrl = "pdmclient://Signature
Application/search=eSignature/parameters={correlationId: "+
correlationId + "}/engine=tablet";
var appUrl = "pdmclient://Signature
Application/search=eSignature/parameters={correlationId:" +
correlationId + "}/engine=wacom";
window.open(appUrl, efs backgroundWorker client);
} catch (ex) {
alert(ex.message);

